Retrieval of aerosol microphysical properties fromAERONET photopolarimetric measurements:1. Information content analysis

نویسندگان

  • Xiaoguang Xu
  • Jun Wang
چکیده

This paper is the first part of a two-part study that aims to retrieve aerosol particle size distribution (PSD) and refractive index from the multispectral and multiangular polarimetric measurements taken by the new-generation Sun photometer as part of the Aerosol Robotic Network (AERONET). It provides theoretical analysis and guidance to the companion study in which we have developed an inversion algorithm for retrieving 22 aerosol microphysical parameters associated with a bimodal PSD function from real AERONET measurements. Our theoretical analysis starts with generating the synthetic measurements at four spectral bands (440, 675, 870, and 1020nm) with a Unified Linearized Vector Radiative Transfer Model for various types of spherical aerosol particles. Subsequently, the quantitative information content for retrieving aerosol parameters is investigated in four observation scenarios, i.e., I1, I2, P1, and P2. Measurements in the scenario (I1) comprise the solar direct radiances and almucantar radiances that are used in the current AERONET operational inversion algorithm. The other three scenarios include different additional measurements: (I2) the solar principal plane radiances, (P1) the solar principal plane radiances and polarization, and (P2) the solar almucantar polarization. Results indicate that adding polarization measurements can increase the degree of freedom for signal by 2–5 in the scenario P1, while not as much of an increase is found in the scenarios I2 and P2. Correspondingly, smallest retrieval errors are found in the scenario P1: 2.3% (2.9%) for the fine-mode (coarse-mode) aerosol volume concentration, 1.3% (3.5%) for the effective radius, 7.2% (12%) for the effective variance, 0.005 (0.035) for the real-part refractive index, and 0.019 (0.068) for the single-scattering albedo. These errors represent a reduction from their counterparts in scenario I1 of 79% (57%), 76% (49%), 69% (52%), 66% (46%), and 49% (20%), respectively. We further investigated those retrieval errors over a variety of aerosol loading and fine-/coarse-mode prevalence, which indicates that observations in scenario P1 can yield the retrieval of refractive index and single-scattering albedo for both fine and coarse aerosol modes, when aerosol optical depth at 440nm is larger than 0.2 and 870/1020nm Ångström exponent ranges between 0.7 and 1.6.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retrieval of aerosol microphysical properties from AERONETphotopolarimetric measurements: 2. A new researchalgorithm and case demonstration

A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network’s (AERONET’s) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical opti...

متن کامل

Benefit of depolarization ratio at λ = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements

A better quantification of aerosol properties is required for improving the modelling of aerosol effects on weather and climate. This task is methodologically demanding due to the diversity of the microphysical properties of aerosols and the complex relation between their microphysical and optical properties. Advanced lidar systems provide spatially and temporally resolved information on the ae...

متن کامل

Case Study on Combined Lidar-photometer Retrieval of Volcanic Ash Properties

We study the benefit of considering sun-/skyphotometer measurements in a microphysical lidar retrieval. Furthermore, to assess the importance of the aerosol model employed by the retrieval, we compare results obtained using a spheroid aerosol model with results using an advanced aerosol model that considers irregular particle shapes. Preliminary results are shown for the massextinction conversi...

متن کامل

Cloud Microphysical Properties Retrieval in the Presence of Strong Aerosol Events

Clouds are one of the main regulating factors of the Earth’s climate through scattering and absorption of solar radiation as well as emission and absorption of thermal radiation. In consequence, the study of cloud properties is extremely important for understanding their role in climate change mechanisms. Specifically, aerosol particles, natural or anthropogenic, influence cloud-related process...

متن کامل

Quantification of uncertainty in aerosol optical thickness retrieval arising from aerosol microphysical model and other sources, applied to Ozone Monitoring Instrument (OMI) measurements

Satellite instruments are nowadays successfully utilised for measuring atmospheric aerosol in many applications as well as in research. Therefore, there is a growing need for rigorous error characterisation of the measurements. Here, we introduce a methodology for quantifying the uncertainty in the retrieval of aerosol optical thickness (AOT). In particular, we concentrate on two aspects: uncer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017